MATH 3060 Tutorial 7

Chan Ki Fung

October 26, 2022

- 1. Let X be a complete metric space, and $T: X \to X$ a map. Suppose T^3 is a contraction, show that T has a unique fixed point.
- 2. (a) Let X be a Banach space, and $Y \subset X$ be a subspace. Suppose Y is not dense in X, show that there exists $x \in X$, with ||x|| = 1 and $d(x, Y) > \frac{1}{2}$.
 - (b) Let X be a Banach space, can you find a sequence $\{x_n\} \subset X$ such that $||x_n|| = 1$ for all n, and there is no converging subsequences.

Proof.

(a) Since Y is not closed, we can choose $x_0 \in X$ s.t. $d(x_0, Y) = c > 0$. Now, choose $y_n \in Y$ s.t. $||x_0 - y_n|| \to c$, and take $x_n = x_0 - y_n$. We have

$$d\left(\frac{x_n}{||x_n||}, Y\right) = \frac{d(x_n, Y)}{|x_n|} \to \frac{c}{c} = 1.$$

Just take $x = \frac{x_n}{||x_n||}$ for some large n.

(b) By part (a), we can choose x_1, x_2, \ldots so that $||x_n|| = 1$ and

$$d(x_n, \operatorname{span}\{x_1, x_2, \dots, x_{n-1}\}) > \frac{1}{2}$$

for any *n*. It has no converging subsequence because $||x_i - x_j|| > \frac{1}{2}$ for any $i \neq j$.

3. Show that the system

$$\begin{cases} x - 2y^3 = 0.01\\ y + \sin^2 x = 0 \end{cases}$$

has a solution.

4. (An application of Inverse function theorem) Consider the function p : $\mathbb{R}^n\to\mathbb{R}^n$ given by

$$p(x) = (p_1(x), p_2(x), \dots, p_n(x)),$$

where $p_k(x) = x_1^k + x_2^k + \cdots + x_n^k$.

- (a) Show that p is not a local diffeomorphism in a neighbourhood of any point on the plane $x_1 = x_2$
- (b) Show that the Jacobian

$$J = \det\left(\frac{\partial p_i}{\partial x_j}\right) = n! \cdot \prod_{i < j} (x_i - x_j)$$

(c) What if we replace p_i by the elementary symmetric polynomials?

Proof.

- (a) Since $p(x + \epsilon, x, x_3, ...) = p(x, x + \epsilon, x_3, ...)$, p is not injective in any neighbourhood of $(x, x, x_3, ...)$, and in particular not local diffeomorphism near that point.
- (b) part (a) tells us that J vanishies on the plane $x_1 x_2 = 0$. On the other hand, we know that J is a polynomial, so $(x_1 x_2)$ must be a factor of J. Similarly, $(x_i x_j)$ is a factor of of J. Therefore, we must have

$$J = c \prod_{i < j} (x_i - x_j)$$

for some polynomial c. Now if we compare the degree of both sides, c must be a constant. By comparing the coefficients of $x_1^{n-1}x_2^{n-2}\cdots x_{n-1}$, we see that c = n!.

(c) Similar to (b), but $c = (-1)^{n(n-1)/2}$ this time.